प्रति -पदार्थ की गुत्थी सुलझाने की दिशा में योरोपीय
न्यूक्लीयर रिसर्च सेंटर का एक और महत्वपूर्ण कदम
प्रति -हाइड्रोजन परमाणु बनाये गए
पहली मरतबा योरोपीय न्यूक्लीयर एजन्सी (CERN )के भौतिकी विद प्रति -हाइड्रोजन परमाणुओं का पुंज
बनाने में कामयाब हुए हैं। इस पहल से प्रति -पदार्थ (Anti -matter )की बुनियादी बुनावट को थोड़ा और
समझने में मदद मिलेगी।
हम राम राम भाई चिठ्ठे पे बारहा बतला चुके हैं कि साधारण पदार्थ के प्रत्येक कण से संगत एक प्रतिकण भी
होता है इलेक्ट्रॉन है तो प्रति -इलेक्ट्रॉन भी है। प्रोटोन के लिए प्रति-प्रोटोन है।एक हाइड्रोजन के एक
सरलतम परमाणु में :
एक प्रोटोन के गिर्द एक इलेक्ट्रॉन घूमता है। प्रति -हाड्रोजन का एक परमाणु प्राप्त हो जाएगा यदि एक प्रति -
इलेक्ट्रॉन एक प्रति -प्रोटोन की परिक्रमा करने के लिए बाधित किया जाए .
योरोपीय नाभिकीय शोध केंद्र के साइंसदानों ने अपने प्रयोगों में मंद गति एंटी -प्रोटानों का इस्तेमाल किया है।
और इस प्रयोग में प्रति -हाइड्रोजन के ८० परमाणु प्राप्त किये हैं।
Physicists from Cern's Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA
)experiment said they have produced at least 80 atoms of antihydrogen .
बेशक प्रति -पदार्थ सृष्टि के किसी भी हिस्से में आदिनांक नहीं मिला है और इसकी गैर -मौज़ूदगी साइंसदानों
के लिए अबूझ पहेली बनी रही है।
जो हो जिनेवा आधारित नाभिकीय शोध के योरोपीय संघ ने एंटी -इलेक्ट्रॉनों और मंद एंटी -प्रोटोनों को मिलाने
में एक एक एंटी -प्रोटोन मंदक (Anti -proton Deceleartor )की मदद से यह करिश्मा कर दिखाया है। इसे एक
महत्वपूर्ण विकास कहा जा सकता है अबूझ प्रति -पदार्थ को बूझने की दिशा में।
समझा जाता है कि हाइड्रोजन और प्रति -हाइड्रोजन के स्पेक्ट्रम में एक समानता होती है। ऐसी प्रागुक्ति भी
की गई थी। ज़ाहिर है इनकी स्पेक्ट्रमी में थोड़ा सा भी अंतर एक नए प्रकार की फ़िज़िक्स (भौतिकी )की नींव
रख देगा।प्रति -पदार्थ की गुत्थी भी सुलझा सकेगा।
आखिर ये सृष्टि ये सारी कायनात ये चाँद ये सितारे ,तमाम अंतरिक्षीय ज्ञात (प्रेक्षणीय )पिंड ,सृष्टि के तमाम
जीव मय होमोसेपियंस साधारण पदार्थ के ही क्यों बने हैं? ये एक उलझन है जो सुलझाए नहीं सुलझती है।
आखिर ये एंटी -मैटर से क्यों नहीं बने हैं?
क्यों पदार्थ और प्रति -पदार्थ की अलहदगी ज़रूरी है? दोनों के बीच दुशमनी एक दूजे की जान ले लेने की हद
तक है। दोनों का सहअस्तित्व और गठबंधन मुमकिन ही नहीं है।परस्पर विनष्ट करने की आश्वस्ति ज़रूर
देते हैं दोनों ही।
इसलिए इन ८० प्रति -परमाणुओं को बनाये रखने के लिए इन्हें साधरण पदार्थ के स्पर्श से बचाये रखना होगा।
इस एवज़ एंटी -हाइड्रोजन के चुंबकीय गुण धर्मों का इस्तेमाल किया जा सकेगा। भले ये गुण हाइड्रोजन के
चुंबकीय गुणों से ही हैं। लेकिन इन्हें चुंबकीय फंदे में फंसाये रखने के लिए असमान चुंबकीय क्षेत्र (Non -
uniform magnetic fields )का ही इस्तेमाल किया जाएगा।
योरोपीय एजन्सी इन प्रयोगों में मुब्तिला है।
However ,the strong magnetic field gradients degrade the spectroscopic properties of (anti )atoms .
To allow for clean high resolution spectroscopy ,the ASACUSA team developed a set -up to transfer anti-
hydrogen atoms to a region where they can be studied in flight ,far from the strong magnetic
field."Antihydrogen atoms having no charge ,it was a big challenge to transport them from their trap ,"said
Yasunori Yamazaki of RIKEN ,Japan ,a team leader of the ASACUSA.
Cern scientists create antihydrogen atoms
LONDON: Cern physicists have succeeded for the first time in producing a beam of antihydrogen atoms, an advance that brings scientists closer to solving the antimatter mystery.
Physicists from Cern's Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment said they have produced at least 80 atoms of antihydrogen.
Primordial antimatter has so far never been observed in the universe, and its absence remains a scientific enigma.
Nevertheless, it is possible to produce significant amounts of antihydrogen in experiments at the Geneva-based European Organisation for Nuclear Research (Cern) by mixing antielectrons (positrons) and low energy antiprotons produced by the Antiproton Decelerator.
The spectra of hydrogen and antihydrogen are predicted to be identical, so any tiny difference between them would immediately open a window to new physics, and could help in solving the antimatter mystery.
It has been a puzzle to scientists why humans, stars and the universe are made of matter, rather than of antimatter.
With its single proton accompanied by just one electron, hydrogen is the simplest existing atom, and one of the most precisely investigated and best understood systems in physics.
Thus comparisons of hydrogen and antihydrogen atoms constitute one of the best ways to perform highly precise tests of matter/antimatter symmetry, researchers said.
Matter and antimatter annihilate immediately when they meet, so aside from creating antihydrogen, one of the key challenges for physicists is to keep antiatoms away from ordinary matter.
To do so, experiments take advantage of antihydrogen's magnetic properties (which are similar to hydrogen's) and use very strong non-uniform magnetic fields to trap antiatoms long enough to study them.
However, the strong magnetic field gradients degrade the spectroscopic properties of the (anti)atoms.
To allow for clean high-resolution spectroscopy, the ASACUSA collaboration developed an innovative set-up to transfer antihydrogen atoms to a region where they can be studied in flight, far from the strong magnetic field.
"Antihydrogen atoms having no charge, it was a big challenge to transport them from their trap," said Yasunori Yamazaki of RIKEN, Japan, a team leader of the ASACUSA collaboration.
"Our results are very promising for high-precision studies of antihydrogen atoms, particularly the hyperfine structure, one of the two best known spectroscopic properties of hydrogen.
कोई टिप्पणी नहीं:
एक टिप्पणी भेजें